Analysis of photochemical and dark glyoxal uptake: Implications for SOA formation
نویسندگان
چکیده
[1] The dependence of glyoxal uptake onto deliquesced ammonium sulfate seed aerosol was studied under photochemical (light + hydroxyl radical (OH)) and dark conditions. In this study, the chemical composition of aerosol formed from glyoxal is identical in the presence or absence of OH. In addition, there was no observed OH dependence on either glyoxal uptake or glyoxal‐ driven aerosol growth for this study. These findings demonstrate that, for the system used here, glyoxal uptake is not affected by the presence of OH. In combination with previous studies, this shows that the exact nature of the type of seed aerosol, in particular the presence of a coating, has a large influence on fast photochemical uptake of glyoxal. Due to the challenge of relating this seed aerosol dependence to ambient conditions, this work highlights the resulting difficulty in quantitatively including SOA formation from glyoxal in models. Citation: Galloway, M. M., C. L. Loza, P. S. Chhabra, A. W. H. Chan, L. D. Yee, J. H. Seinfeld, and F. N. Keutsch (2011), Analysis of photochemical and dark glyoxal uptake: Implications for SOA format ion , Geophys . Res . Let t . , 38 , L17811, doi:10.1029/2011GL048514.
منابع مشابه
Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions
Chamber studies of glyoxal uptake onto ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions. Glyoxal monomers and oligomers were the dominant organic compounds form...
متن کاملGlyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles
This study presents a modeling framework based on laboratory data to describe the kinetics of glyoxal reactions that form secondary organic aerosol (SOA) in aqueous aerosol particles. Recent laboratory results on glyoxal reactions are reviewed and a consistent set of empirical reaction rate constants is derived that captures the kinetics of glyoxal hydration and subsequent reversible and irreve...
متن کاملChamber studies of SOA formation from aromatic hydrocarbons: observation of limited glyoxal uptake
This study evaluates the significance of glyoxal acting as an intermediate species leading to secondary organic aerosol (SOA) formation from aromatic hydrocarbon photooxidation under humid conditions. Rapid SOA formation from glyoxal uptake onto aqueous (NH4)2SO4 seed particles is observed in agreement with previous studies; however, glyoxal did not partition significantly to SOA (with or witho...
متن کاملSimulation of semi-explicit mechanisms of SOA formation from glyoxal in aerosol in a 3-D model
New pathways to form secondary organic aerosol (SOA) have been postulated recently. Glyoxal, the smallest dicarbonyl, is one of the proposed precursors. It has both anthropogenic and biogenic sources, and readily partitions into the aqueous phase of cloud droplets and deliquesced particles where it undergoes both reversible and irreversible chemistry. In this work we extend the regional scale c...
متن کاملA missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol
[1] The sources of secondary organic aerosol (SOA) are highly uncertain. Direct measurements of gas-phase glyoxal in Mexico City are compared to experimentally constrained model predictions. Observed glyoxal concentrations are found significantly below those predicted. Additional glyoxal sources are likely and would increase these differences; an additional glyoxal sink must be operative. The m...
متن کامل